HSP60: References

  1. Hemmingsen,S.M. et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333, 330-334 (1988). [PubMed]
  2. Brocchieri,L. & Karlin,S. Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci. 9, 476-486 (2000). [PubMed]
  3. Merendino,A.M. et al. Hsp60 is actively secreted by human tumor cells. PLoS. ONE. 5, e9247 (2010). [PubMed]
  4. Pockley,A.G. & Multhoff,G. Cell stress proteins in extracellular fluids: friend or foe? Novartis Found. Symp. 291, 86-95 (2008). [PubMed]
  5. Pockley,A.G., Muthana,M., & Calderwood,S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci. 33, 71-79 (2008). [PubMed]
  6. Hendrix,R.W. Purification and properties of groE, a host protein involved in bacteriophage assembly. J. Mol. Biol. 129, 375-392 (1979). [PubMed]
  7. Fenton,W.A. & Horwich,A.L. Chaperonin-mediated protein folding: fate of substrate polypeptide. Q. Rev. Biophys. 36, 229-256 (2003). [PubMed]
  8. Hartl,F.U. & Hayer-Hartl,M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858 (2002). [PubMed]
  9. Pace,A. et al. Hsp60, a novel target for antitumor therapy: structure-function features and prospective drugs design. Curr. Pharm. Des 19, 2757-2764 (2013). [PubMed]
  10. Ritossa,F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35, 601-607 (1963). [CrossRef]
  11. Ritossa,F. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosophila Information Service 37, 122-123 (1963). [Drosophila Information Service]
  12. Ritossa,F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573 (1962). [CrossRef]
  13. Tissieres,A., Mitchell,H.K., & Tracy,U.M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398 (1974). [PubMed]
  14. Schlesinger,M.J., Ashburner,M., & Tissières,A. Heat shock, from bacteria to man, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1982).
  15. Lindquist,S. & Craig,E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631-677 (1988). [PubMed]
  16. Schlesinger,M.J. Heat shock proteins. J. Biol. Chem. 265, 12111-12114 (1990). [PubMed]
  17. Jäättelä,M. Heat shock proteins as cellular lifeguards. Ann. Med. 31, 261-271 (1999). [PubMed]
  18. Shamovsky,I. & Nudler,E. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci. 65, 855-861 (2008). [PubMed]
  19. Ellis,R.J. & van der Vies,S.M. Molecular chaperones. Annu. Rev. Biochem. 60, 321-347 (1991). [PubMed]
  20. Sternberg,N. Properties of a mutant of Escherichia coli defective in bacteriophage lambda head formation (groE). II. The propagation of phage lambda. J. Mol. Biol. 76, 25-44 (1973). [PubMed]
  21. Georgopoulos,C.P., Hendrix,R.W., Casjens,S.R., & Kaiser,A.D. Host participation in bacteriophage lambda head assembly. J. Mol. Biol. 76, 45-60 (1973). [PubMed]
  22. Mehra,V., Sweetser,D., & Young,R.A. Efficient mapping of protein antigenic determinants. Proc. Natl. Acad. Sci. U. S. A 83, 7013-7017 (1986). [PubMed]
  23. Goloubinoff,P., Gatenby,A.A., & Lorimer,G.H. GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337, 44-47 (1989). [PubMed]
  24. Hunt,J.F., Weaver,A.J., Landry,S.J., Gierasch,L., & Deisenhofer,J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature 379, 37-45 (1996). [PubMed]
  25. Xu,Z., Horwich,A.L., & Sigler,P.B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388, 741-750 (1997). [PubMed]
  26. Saibil,H.R. et al. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr. Biol. 3, 265-273 (1993). [PubMed]
  27. Braig,K., Adams,P.D., & Brunger,A.T. Conformational variability in the refined structure of the chaperonin GroEL at 2.8 A resolution. Nat. Struct. Biol. 2, 1083-1094 (1995). [PubMed]
  28. Braig,K. et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371, 578-586 (1994). [PubMed]
  29. Cheng,M.Y. et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620-625 (1989). [PubMed]
  30. Lissin,N.M., Venyaminov,S.Y., & Girshovich,A.S. (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348, 339-342 (1990). [PubMed]
  31. Mendoza,J.A., Demeler,B., & Horowitz,P.M. Alteration of the quaternary structure of cpn60 modulates chaperonin-assisted folding. Implications for the mechanism of chaperonin action. J. Biol. Chem. 269, 2447-2451 (1994). [PubMed]
  32. Mizobata,T. & Kawata,Y. The guanidine-induced conformational changes of the chaperonin GroEL from Escherichia coli. Evidence for the existence of an unfolding intermediate state. Biochim. Biophys. Acta 1209, 83-88 (1994). [PubMed]
  33. Horowitz,P.M., Hua,S., & Gibbons,D.L. Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer. J. Biol. Chem. 270, 1535-1542 (1995). [PubMed]
  34. Ybarra,J. & Horowitz,P.M. Refolding and reassembly of active chaperonin GroEL after denaturation. J. Biol. Chem. 270, 22113-22115 (1995). [PubMed]
  35. Gorovits,B.M. & Horowitz,P.M. The chaperonin GroEL is destabilized by binding of ADP. J. Biol. Chem. 270, 28551-28556 (1995). [PubMed]
  36. Lissin,N.M. In vitro dissociation of self-assembly of three chaperonin 60s: the role of ATP. FEBS Lett. 361, 55-60 (1995). [PubMed]
  37. Panda,M., Ybarra,J., & Horowitz,P.M. High hydrostatic pressure can probe the effects of functionally related ligands on the quaternary structures of the chaperonins GroEL and GroES. J. Biol. Chem. 276, 6253-6259 (2001). [PubMed]
  38. Mendoza,J.A. & Horowitz,P.M. Bound substrate polypeptides can generally stabilize the tetradecameric structure of Cpn60 and induce its reassembly from monomers. J. Biol. Chem. 269, 25963-25965 (1994). [PubMed]
  39. Ditzel,L. et al. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93, 125-138 (1998). [PubMed]
  40. Jindal,S., Dudani,A.K., Singh,B., Harley,C.B., & Gupta,R.S. Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen. Mol. Cell Biol. 9, 2279-2283 (1989). [PubMed]
  41. Viitanen,P.V., Gatenby,A.A., & Lorimer,G.H. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1, 363-369 (1992). [PubMed]
  42. Nielsen,K.L., McLennan,N., Masters,M., & Cowan,N.J. A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J. Bacteriol. 181, 5871-5875 (1999). [PubMed]
  43. Nielsen,K.L. & Cowan,N.J. A single ring is sufficient for productive chaperonin-mediated folding in vivo. Mol. Cell 2, 93-99 (1998). [PubMed]
  44. Itoh,H. et al. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration. Eur. J. Biochem. 269, 5931-5938 (2002). [PubMed]
  45. Samali,A., Cai,J., Zhivotovsky,B., Jones,D.P., & Orrenius,S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J. 18, 2040-2048 (1999). [PubMed]
  46. Noonan,F.P., Halliday,W.J., Morton,H., & Clunie,G.J. Early pregnancy factor is immunosuppressive. Nature 278, 649-651 (1979). [PubMed]
  47. Morton,H., Rolfe,B., & Clunie,G.J. An early pregnancy factor detected in human serum by the rosette inhibition test. Lancet 1, 394-397 (1977). [PubMed]
  48. Cavanagh,A.C. & Morton,H. The purification of early-pregnancy factor to homogeneity from human platelets and identification as chaperonin 10. Eur. J. Biochem. 222, 551-560 (1994). [PubMed]
  49. Cappello,F. et al. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert. Opin. Ther. Targets. 18, 185-208 (2014). [PubMed]
  50. Nisemblat,S., Parnas,A., Yaniv,O., Azem,A., & Frolow,F. Crystallization and structure determination of a symmetrical ‘football’ complex of the mammalian mitochondrial Hsp60-Hsp10 chaperonins. Acta Crystallogr. F. Struct. Biol. Commun. 70, 116-119 (2014). [PubMed]
  51. Yaffe,M.B. et al. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358, 245-248 (1992). [PubMed]
  52. Lewis,V.A., Hynes,G.M., Zheng,D., Saibil,H., & Willison,K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature 358, 249-252 (1992). [PubMed]
  53. Hynes,G.M. & Willison,K.R. Individual subunits of the eukaryotic cytosolic chaperonin mediate interactions with binding sites located on subdomains of beta-actin. J. Biol. Chem. 275, 18985-18994 (2000). [PubMed]
  54. Thulasiraman,V., Yang,C.F., & Frydman,J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 18, 85-95 (1999). [PubMed]
  55. Llorca,O. et al. Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J. Struct. Biol. 135, 205-218 (2001). [PubMed]
  56. Munoz,I.G. et al. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat. Struct. Mol. Biol. 18, 14-19 (2011). [PubMed]
  57. Pereira,J.H. et al. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. J. Biol. Chem. 285, 27958-27966 (2010). [PubMed]
  58. Shomura,Y. et al. Crystal structures of the group II chaperonin from Thermococcus strain KS-1: steric hindrance by the substituted amino acid, and inter-subunit rearrangement between two crystal forms. J. Mol. Biol. 335, 1265-1278 (2004). [PubMed]
  59. Fountoulakis,M., Tsangaris,G., Oh,J., Maris,A., & Lubec,G. Protein profile of the HeLa cell line. J. Chromatogr. A 1038, 247-265 (2004). [CrossRef]
  60. Kampinga,H.H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105-111 (2009). [PubMed]
  61. Trent,J.D., Nimmesgern,E., Wall,J.S., Hartl,F.U., & Horwich,A.L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature 354, 490-493 (1991). [PubMed]
  62. McMullin,T.W. & Hallberg,R.L. A highly evolutionarily conserved mitochondrial protein is structurally related to the protein encoded by the Escherichia coli groEL gene. Mol. Cell Biol. 8, 371-380 (1988). [PubMed]
  63. Gupta,R.S. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol. 15, 1-11 (1995). [PubMed]
  64. Kaneko,T. et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res. 9, 189-197 (2002). [PubMed]
  65. Lund,P.A., Large,A.T., & Kapatai,G. The chaperonins: perspectives from the Archaea. Biochem. Soc. Trans. 31, 681-685 (2003). [PubMed]
  66. Macario,A.J., Lange,M., Ahring,B.K., & Conway de,M.E. Stress genes and proteins in the archaea. Microbiol. Mol. Biol. Rev. 63, 923-67, table (1999). [PubMed]
  67. Hansen,J.J. et al. Genomic structure of the human mitochondrial chaperonin genes: HSP60 and HSP10 are localised head to head on chromosome 2 separated by a bidirectional promoter. Hum. Genet. 112, 71-77 (2003). [PubMed]
  68. Venner,T.J., Singh,B., & Gupta,R.S. Nucleotide sequences and novel structural features of human and Chinese hamster hsp60 (chaperonin) gene families. DNA Cell Biol. 9, 545-552 (1990). [PubMed]
  69. Singh,B., Patel,H.V., Ridley,R.G., Freeman,K.B., & Gupta,R.S. Mitochondrial import of the human chaperonin (HSP60) protein. Biochem. Biophys. Res. Commun. 169, 391-396 (1990). [PubMed]
  70. Kotlo,K. et al. PR65A phosphorylation regulates PP2A complex signaling. PLoS. ONE. 9, e85000 (2014). [PubMed]
  71. Leach,M.D., Stead,D.A., Argo,E., & Brown,A.J. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans. Mol. Biol. Cell 22, 687-702 (2011). [PubMed]
  72. Choudhary,C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834-840 (2009). [PubMed]
  73. Peng,C. et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell Proteomics. 10, M111 (2011). [PubMed]
  74. Hayoun,D. et al. HSP60 is transported through the secretory pathway of 3-MCA-induced fibrosarcoma tumour cells and undergoes N-glycosylation. FEBS J. 279, 2083-2095 (2012). [PubMed]
  75. Kim,H.S. et al. Heat shock protein 60 modified with O-linked N-acetylglucosamine is involved in pancreatic beta-cell death under hyperglycemic conditions. FEBS Lett. 580, 2311-2316 (2006). [PubMed]
  76. Venner,T.J. & Gupta,R.S. Nucleotide sequence of mouse HSP60 (chaperonin, GroEL homolog) cDNA. Biochim. Biophys. Acta 1087, 336-338 (1990). [PubMed]
  77. Picketts,D.J., Mayanil,C.S., & Gupta,R.S. Molecular cloning of a Chinese hamster mitochondrial protein related to the “chaperonin” family of bacterial and plant proteins. J. Biol. Chem. 264, 12001-12008 (1989). [PubMed]
  78. Venner,T.J. & Gupta,R.S. Nucleotide sequence of rat hsp60 (chaperonin, GroEL homolog) cDNA. Nucleic Acids Res. 18, 5309 (1990). [PubMed]
  79. Hartl,F.U., Bracher,A., & Hayer-Hartl,M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332 (2011). [PubMed]
  80. Bigotti,M.G. & Clarke,A.R. Chaperonins: The hunt for the Group II mechanism. Arch. Biochem. Biophys. 474, 331-339 (2008). [PubMed]
  81. Cong,Y. et al. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement. Proc. Natl. Acad. Sci. U. S. A 107, 4967-4972 (2010). [PubMed]
  82. Kim,S., Willison,K.R., & Horwich,A.L. Cystosolic chaperonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19, 543-548 (1994). [PubMed]
  83. Kubota,H., Hynes,G., Carne,A., Ashworth,A., & Willison,K. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr. Biol. 4, 89-99 (1994). [PubMed]
  84. Archibald,J.M., Logsdon,J.M., Jr., & Doolittle,W.F. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol. Biol. Evol. 17, 1456-1466 (2000). [PubMed]
  85. Kubota,H., Hynes,G., & Willison,K. The chaperonin containing t-complex polypeptide 1 (TCP-1). Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230, 3-16 (1995). [PubMed]
  86. Kubota,H., Hynes,G.M., Kerr,S.M., & Willison,K.R. Tissue-specific subunit of the mouse cytosolic chaperonin-containing TCP-1. FEBS Lett. 402, 53-56 (1997). [PubMed]
  87. Katsanis,N. et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat. Genet. 26, 67-70 (2000). [PubMed]
  88. Slavotinek,A.M. et al. Mutations in MKKS cause Bardet-Biedl syndrome. Nat. Genet. 26, 15-16 (2000). [PubMed]
  89. Stoetzel,C. et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am. J. Hum. Genet. 80, 1-11 (2007). [PubMed]
  90. Stoetzel,C. et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat. Genet. 38, 521-524 (2006). [PubMed]
  91. Green,J.S. et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N. Engl. J. Med. 321, 1002-1009 (1989). [PubMed]
  92. Beales,P.L., Elcioglu,N., Woolf,A.S., Parker,D., & Flinter,F.A. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J. Med. Genet. 36, 437-446 (1999). [PubMed]
  93. Nishio,K., Hirohashi,T., & Nakai,M. Chloroplast chaperonins: evidence for heterogeneous assembly of alpha and beta Cpn60 polypeptides into a chaperonin oligomer. Biochem. Biophys. Res. Commun. 266, 584-587 (1999). [PubMed]
  94. Martel,R., Cloney,L.P., Pelcher,L.E., & Hemmingsen,S.M. Unique composition of plastid chaperonin-60: alpha and beta polypeptide-encoding genes are highly divergent. Gene 94, 181-187 (1990). [PubMed]
  95. Hill,J.E. & Hemmingsen,S.M. Arabidopsis thaliana type I and II chaperonins. Cell Stress Chaperones 6, 190-200 (2001). [PubMed]
  96. Wastl,J., Fraunholz,M., Zauner,S., Douglas,S., & Maier,U.G. Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example. J. Mol. Evol. 48, 112-117 (1999). [PubMed]
  97. Archibald,J.M., Blouin,C., & Doolittle,W.F. Gene duplication and the evolution of group II chaperonins: implications for structure and function. J. Struct. Biol. 135, 157-169 (2001). [PubMed]
  98. Thompson,M.D., Paavola,C.D., Lenvik,T.R., & Gantt,J.S. Chlamydomonas transcripts encoding three divergent plastid chaperonins are heat-inducible. Plant Mol. Biol. 27, 1031-1035 (1995). [PubMed]
  99. Lakhotia,S.C. & Singh,B.N. Synthesis of a ubiquitously present new HSP60 family protein is enhanced by heat shock only in the Malpighian tubules of Drosophila. Experientia 52, 751-756 (1996). [PubMed]
  100. Sarkar,S. & Lakhotia,S.C. The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J. Genet. 84, 265-281 (2005). [PubMed]
  101. Kozlova,T., Perezgasga,L., Reynaud,E., & Zurita,M. The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10Ac and is differentially expressed during fly development. Dev. Genes Evol. 207, 253-263 (1997). [CrossRef]
  102. Timakov,B. & Zhang,P. The hsp60B gene of Drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones 6, 71-77 (2001). [PubMed]
  103. Sarkar,S. & Lakhotia,S.C. Hsp60C is required in follicle as well as germline cells during oogenesis in Drosophila melanogaster. Dev. Dyn. 237, 1334-1347 (2008). [PubMed]
  104. Arya,R. & Lakhotia,S.C. Hsp60D is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 13, 509-526 (2008). [PubMed]
  105. Arya,R., Mallik,M., & Lakhotia,S.C. Heat shock genes – integrating cell survival and death. J. Biosci. 32, 595-610 (2007). [PubMed]
  106. Fayet,O., Ziegelhoffer,T., & Georgopoulos,C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J. Bacteriol. 171, 1379-1385 (1989). [PubMed]
  107. Segal,R. & Ron,E.Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol. Lett. 138, 1-10 (1996). [PubMed]
  108. Lehel,C. et al. A second groEL-like gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J. Biol. Chem. 268, 1799-1804 (1993). [PubMed]
  109. Furuki,M., Tanaka,N., Hiyama,T., & Nakamoto,H. Cloning, characterization and functional analysis of groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim. Biophys. Acta 1294, 106-110 (1996). [PubMed]
  110. Rusanganwa,E. & Gupta,R.S. Cloning and characterization of multiple groEL chaperonin-encoding genes in Rhizobium meliloti. Gene 126, 67-75 (1993). [PubMed]
  111. Rajaram,H., Ballal,A.D., Apte,S.K., Wiegert,T., & Schumann,W. Cloning and characterization of the major groESL operon from a nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Biochim. Biophys. Acta 1519, 143-146 (2001). [PubMed]
  112. Rinke de Wit,T.F. et al. Mycobacteria contain two groEL genes: the second Mycobacterium leprae groEL gene is arranged in an operon with groES. Mol. Microbiol. 6, 1995-2007 (1992). [PubMed]
  113. Mazodier,P., Guglielmi,G., Davies,J., & Thompson,C.J. Characterization of the groEL-like genes in Streptomyces albus. J. Bacteriol. 173, 7382-7386 (1991). [PubMed]
  114. Kong,T.H., Coates,A.R., Butcher,P.D., Hickman,C.J., & Shinnick,T.M. Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc. Natl. Acad. Sci. U. S. A 90, 2608-2612 (1993). [PubMed]
  115. Wallington,E.J. & Lund,P.A. Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140 ( Pt 1), 113-122 (1994). [PubMed]
  116. Fischer,H.M. et al. One member of a gro-ESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 12, 2901-2912 (1993). [PubMed]
  117. Archibald,J.M., Logsdon,J.M., & Doolittle,W.F. Recurrent paralogy in the evolution of archaeal chaperonins. Curr. Biol. 9, 1053-1056 (1999). [PubMed]
  118. Furutani,M., Iida,T., Yoshida,T., & Maruyama,T. Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J. Biol. Chem. 273, 28399-28407 (1998). [PubMed]
  119. Kurouski,D., Luo,H., Sereda,V., Robb,F.T., & Lednev,I.K. Rapid degradation kinetics of amyloid fibrils under mild conditions by an archaeal chaperonin. Biochem. Biophys. Res. Commun. 422, 97-102 (2012). [PubMed]
  120. Balczun,C., Bunse,A., Schwarz,C., Piotrowski,M., & Kuck,U. Chloroplast heat shock protein Cpn60 from Chlamydomonas reinhardtii exhibits a novel function as a group II intron-specific RNA-binding protein. FEBS Lett. 580, 4527-4532 (2006). [PubMed]
  121. Ruggero,D., Ciammaruconi,A., & Londei,P. The chaperonin of the archaeon Sulfolobus solfataricus is an RNA-binding protein that participates in ribosomal RNA processing. EMBO J. 17, 3471-3477 (1998). [PubMed]
  122. Frydman,J. et al. Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11, 4767-4778 (1992). [PubMed]
  123. Liou,A.K. & Willison,K.R. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J. 16, 4311-4316 (1997). [PubMed]
  124. Liou,A.K., McCormack,E.A., & Willison,K.R. The chaperonin containing TCP-1 (CCT) displays a single-ring mediated disassembly and reassembly cycle. Biol. Chem. 379, 311-319 (1998). [PubMed]
  125. Stoldt,V. et al. Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast 12, 523-529 (1996). [PubMed]
  126. Dekker,C. et al. The interaction network of the chaperonin CCT. EMBO J. 27, 1827-1839 (2008). [PubMed]
  127. Johnson,R.B., Fearon,K., Mason,T., & Jindal,S. Cloning and characterization of the yeast chaperonin HSP60 gene. Gene 84, 295-302 (1989). [PubMed]
  128. Reading,D.S., Hallberg,R.L., & Myers,A.M. Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337, 655-659 (1989). [PubMed]
  129. Matsuda,N. & Mishina,M. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Development 131, 1913-1925 (2004). [PubMed]
  130. Rual,J.F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res. 14, 2162-2168 (2004). [PubMed]
  131. Sarge,K.D. & Cullen,K.E. Regulation of hsp expression during rodent spermatogenesis. Cell Mol. Life Sci. 53, 191-197 (1997). [PubMed]
  132. Paranko,J., Seitz,J., & Meinhardt,A. Developmental expression of heat shock protein 60 (HSP60) in the rat testis and ovary. Differentiation 60, 159-167 (1996). [PubMed]
  133. Werner,A., Meinhardt,A., Seitz,J., & Bergmann,M. Distribution of heat-shock protein 60 immunoreactivity in testes of infertile men. Cell Tissue Res. 288, 539-544 (1997). [PubMed]
  134. Ranson,N.A. et al. ATP-bound states of GroEL captured by cryo-electron microscopy. Cell 107, 869-879 (2001). [PubMed]
  135. Roseman,A.M., Chen,S., White,H., Braig,K., & Saibil,H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241-251 (1996). [PubMed]
  136. Chen,S. et al. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature 371, 261-264 (1994). [PubMed]
  137. Saibil,H. & Wood,S. Chaperonins. Curr. Opin. Struct. Biol. 3, 207-213 (1993). [CrossRef]
  138. Clare,D.K. & Saibil,H.R. ATP-driven molecular chaperone machines. Biopolymers 99, 846-859 (2013). [PubMed]
  139. Fenton,W.A., Kashi,Y., Furtak,K., & Horwich,A.L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371, 614-619 (1994). [PubMed]
  140. Braig,K., Simon,M., Furuya,F., Hainfeld,J.F., & Horwich,A.L. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc. Natl. Acad. Sci. U. S. A 90, 3978-3982 (1993). [PubMed]
  141. Ishii,N., Taguchi,H., Sasabe,H., & Yoshida,M. Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody. J. Mol. Biol. 236, 691-696 (1994). [PubMed]
  142. Langer,T., Pfeifer,G., Martin,J., Baumeister,W., & Hartl,F.U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11, 4757-4765 (1992). [PubMed]
  143. Sigler,P.B. et al. Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581-608 (1998). [PubMed]
  144. Murai,N., Makino,Y., & Yoshida,M. GroEL locked in a closed conformation by an interdomain cross-link can bind ATP and polypeptide but cannot process further reaction steps. J. Biol. Chem. 271, 28229-28234 (1996). [PubMed]
  145. Bochkareva,E.S., Lissin,N.M., Flynn,G.C., Rothman,J.E., & Girshovich,A.S. Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267, 6796-6800 (1992). [PubMed]
  146. Burston,S.G., Ranson,N.A., & Clarke,A.R. The origins and consequences of asymmetry in the chaperonin reaction cycle. J. Mol. Biol. 249, 138-152 (1995). [PubMed]
  147. Todd,M.J., Viitanen,P.V., & Lorimer,G.H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science 265, 659-666 (1994). [PubMed]
  148. Llorca,O., Carrascosa,J.L., & Valpuesta,J.M. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. J. Biol. Chem. 271, 68-76 (1996). [PubMed]
  149. Parnas,A. et al. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer. J. Biol. Chem. 284, 28198-28203 (2009). [PubMed]
  150. Viitanen,P.V. et al. Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J. Biol. Chem. 267, 695-698 (1992). [PubMed]
  151. Levy-Rimler,G. et al. The effect of nucleotides and mitochondrial chaperonin 10 on the structure and chaperone activity of mitochondrial chaperonin 60. Eur. J. Biochem. 268, 3465-3472 (2001). [PubMed]
  152. Vilasi,S. et al. Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS. ONE. 9, e97657 (2014). [PubMed]
  153. Goncalves,M.S. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 109, 190-212 (2009). [PubMed]
  154. Habich,C. et al. Heat shock protein 60: specific binding of lipopolysaccharide. J. Immunol. 174, 1298-1305 (2005). [PubMed]
  155. David,S. et al. Hsp10: anatomic distribution, functions, and involvement in human disease. Front. Biosci. (Elite. Ed) 5, 768-778 (2013). [PubMed]
  156. Corrao,S. et al. Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sci. 86, 145-152 (2010). [PubMed]
  157. Viitanen,P.V. et al. Purification of mammalian mitochondrial chaperonin 60 through in vitro reconstitution of active oligomers. Methods Enzymol. 290, 203-217 (1998). [PubMed]
  158. Chaudhry,C. et al. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J. 22, 4877-4887 (2003). [PubMed]
  159. Weissman,J.S., Rye,H.S., Fenton,W.A., Beechem,J.M., & Horwich,A.L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84, 481-490 (1996). [PubMed]
  160. Mayhew,M. et al. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379, 420-426 (1996). [PubMed]
  161. Apetri,A.C. & Horwich,A.L. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proc. Natl. Acad. Sci. U. S. A 105, 17351-17355 (2008). [PubMed]
  162. Yifrach,O. & Horovitz,A. Transient kinetic analysis of adenosine 5′-triphosphate binding-induced conformational changes in the allosteric chaperonin GroEL. Biochemistry 37, 7083-7088 (1998). [PubMed]
  163. Tyagi,N.K., Fenton,W.A., & Horwich,A.L. GroEL/GroES cycling: ATP binds to an open ring before substrate protein favoring protein binding and production of the native state. Proc. Natl. Acad. Sci. U. S. A 106, 20264-20269 (2009). [PubMed]
  164. Clare,D.K. et al. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 149, 113-123 (2012). [PubMed]
  165. Bukau,B. & Horwich,A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351-366 (1998). [PubMed]
  166. Hutchinson,E.G., Tichelaar,W., Hofhaus,G., Weiss,H., & Leonard,K.R. Identification and electron microscopic analysis of a chaperonin oligomer from Neurospora crassa mitochondria. EMBO J. 8, 1485-1490 (1989). [PubMed]
  167. Kirchhoff,S.R., Gupta,S., & Knowlton,A.A. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105, 2899-2904 (2002). [PubMed]
  168. Gupta,S. & Knowlton,A.A. Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 106, 2727-2733 (2002). [PubMed]
  169. Apuya,N.R. et al. The Arabidopsis embryo mutant schlepperless has a defect in the chaperonin-60alpha gene. Plant Physiol. 126, 717-730 (2001). [PubMed]
  170. Bui,E.T., Bradley,P.J., & Johnson,P.J. A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Natl. Acad. Sci. U. S. A 93, 9651-9656 (1996). [PubMed]
  171. Cechetto,J.D., Soltys,B.J., & Gupta,R.S. Localization of mitochondrial 60-kD heat shock chaperonin protein (Hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. J. Histochem. Cytochem. 48, 45-56 (2000). [PubMed]
  172. Soltys,B.J. & Gupta,R.S. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res. 222, 16-27 (1996). [PubMed]
  173. Lindmark,D.G. & Muller,M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724-7728 (1973). [PubMed]
  174. Chandra,D., Choy,G., & Tang,D.G. Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J. Biol. Chem. 282, 31289-31301 (2007). [PubMed]
  175. Campanella,C. et al. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities. PLoS. ONE. 7, e42008 (2012). [PubMed]
  176. Feng,H., Zeng,Y., Graner,M.W., & Katsanis,E. Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100, 4108-4115 (2002). [PubMed]
  177. Shin,B.K. et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607-7616 (2003). [PubMed]
  178. Chen,W. et al. Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur. J. Immunol. 36, 1598-1607 (2006). [PubMed]
  179. Gupta,S. & Knowlton,A.A. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am. J. Physiol Heart Circ. Physiol 292, H3052-H3056 (2007). [PubMed]
  180. Lewthwaite,J., Owen,N., Coates,A., Henderson,B., & Steptoe,A. Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106, 196-201 (2002). [PubMed]
  181. Xu,Q. Role of heat shock proteins in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22, 1547-1559 (2002). [PubMed]
  182. Pockley,A.G., Bulmer,J., Hanks,B.M., & Wright,B.H. Identification of human heat shock protein 60 (Hsp60) and anti-Hsp60 antibodies in the peripheral circulation of normal individuals. Cell Stress Chaperones 4, 29-35 (1999). [PubMed]
  183. Shamaei-Tousi,A. et al. Plasma heat shock protein 60 and cardiovascular disease risk: the role of psychosocial, genetic, and biological factors. Cell Stress Chaperones 12, 384-392 (2007). [PubMed]
  184. Pockley,A.G. et al. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J. Hypertens. 20, 1815-1820 (2002). [PubMed]
  185. Pockley,A.G., Georgiades,A., Thulin,T., de,F.U., & Frostegard,J. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 42, 235-238 (2003). [PubMed]
  186. Pockley,A.G. et al. Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36, 303-307 (2000). [PubMed]
  187. Bassan,M. et al. The identification of secreted heat shock 60 -like protein from rat glial cells and a human neuroblastoma cell line. Neurosci. Lett. 250, 37-40 (1998). [PubMed]
  188. Xu,Q. et al. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102, 14-20 (2000). [PubMed]
  189. Zhang,X. et al. Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118, 2687-2693 (2008). [PubMed]
  190. Henderson,B. & Shamaei-Tousi,A. Molecular chaperones: the unorthodox view in Molecular chaperones and cell signalling (eds. Henderson,B. & Pockley,A.G.), 78-98, Cambridge University Press, New York (2005).
  191. Rea,I.M., McNerlan,S., & Pockley,A.G. Serum heat shock protein and anti-heat shock protein antibody levels in aging. Exp. Gerontol. 36, 341-352 (2001). [PubMed]
  192. Terry,D.F. et al. Cardiovascular disease delay in centenarian offspring: role of heat shock proteins. Ann. N. Y. Acad. Sci. 1019, 502-505 (2004). [PubMed]
  193. Mayr,M. & Xu,Q. Smooth muscle cell apoptosis in arteriosclerosis. Exp. Gerontol. 36, 969-987 (2001). [PubMed]
  194. Bennett,M.R. & Boyle,J.J. Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis 138, 3-9 (1998). [PubMed]
  195. Schett,G. et al. Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc. Res. 42, 685-695 (1999). [PubMed]
  196. Hochleitner,B.W. et al. Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler. Thromb. Vasc. Biol. 20, 617-623 (2000). [PubMed]
  197. Blake,M.J., Klevay,L.M., Halas,E.S., & Bode,A.M. Blood pressure and heat shock protein expression in response to acute and chronic stress. Hypertension 25, 539-544 (1995). [PubMed]
  198. Frostegard,J. & Pockley,A.G. Heat shock protein release and naturally occurring exogenous heat shock proteins in Molecular chaperones and cell signalling (eds. Henderson,B. & Pockley,A.G.), 195-219, Cambridge University Press, New York (2005).
  199. Hartl,F.U. Molecular chaperones in cellular protein folding. Nature 381, 571-579 (1996). [PubMed]
  200. Hinault,M.P., Ben-Zvi,A., & Goloubinoff,P. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30, 249-265 (2006). [PubMed]
  201. Natalello,A. et al. Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates. J. Mol. Biol. 425, 1158-1171 (2013). [PubMed]
  202. Priya,S., Sharma,S.K., & Goloubinoff,P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 587, 1981-1987 (2013). [PubMed]
  203. Kaufman,B.A. et al. In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc. Natl. Acad. Sci. U. S. A 97, 7772-7777 (2000). [PubMed]
  204. Kaufman,B.A., Kolesar,J.E., Perlman,P.S., & Butow,R.A. A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. J. Cell Biol. 163, 457-461 (2003). [PubMed]
  205. Lin,Z., Madan,D., & Rye,H.S. GroEL stimulates protein folding through forced unfolding. Nat. Struct. Mol. Biol. 15, 303-311 (2008). [PubMed]
  206. Mendoza,J.A., Rogers,E., Lorimer,G.H., & Horowitz,P.M. Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. Biol. Chem. 266, 13044-13049 (1991). [PubMed]
  207. Priya,S. et al. GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP. Proc. Natl. Acad. Sci. U. S. A 110, 7199-7204 (2013). [PubMed]
  208. Mattoo,R.U. & Goloubinoff,P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol. Life Sci. 71, 3311-3325 (2014). [PubMed]
  209. Goloubinoff,P., Diamant,S., Weiss,C., & Azem,A. GroES binding regulates GroEL chaperonin activity under heat shock. FEBS Lett. 407, 215-219 (1997). [PubMed]
  210. Saidi,Y. et al. Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant Cell Environ. 30, 753-763 (2007). [PubMed]
  211. Sharma,S.K., De Los,R.P., & Goloubinoff,P. Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate. Proteins 79, 1991-1998 (2011). [PubMed]
  212. Blondin,P.A., Kirby,R.J., & Barnum,S. The heat shock response and acquired thermotolerance in three strains of cyanobacteria. Curr. Microbiol. 26, 79-84 (1993). [CrossRef]
  213. Rajaram,H. & Apte,S.K. Heat-shock response and its contribution to thermotolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Arch. Microbiol. 179, 423-429 (2003). [PubMed]
  214. Rajaram,H. & Apte,S.K. Nitrogen status and heat-stress-dependent differential expression of the cpn60 chaperonin gene influences thermotolerance in the cyanobacterium Anabaena. Microbiology 154, 317-325 (2008). [PubMed]
  215. Czarnecka,A.M., Campanella,C., Zummo,G., & Cappello,F. Heat shock protein 10 and signal transduction: a “capsula eburnea” of carcinogenesis? Cell Stress Chaperones 11, 287-294 (2006). [PubMed]
  216. Deocaris,C.C., Kaul,S.C., & Wadhwa,R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11, 116-128 (2006). [PubMed]
  217. Sigal,L.H., Williams,S., Soltys,B., & Gupta,R. H9724, a monoclonal antibody to Borrelia burgdorferi’s flagellin, binds to heat shock protein 60 (HSP60) within live neuroblastoma cells: a potential role for HSP60 in peptide hormone signaling and in an autoimmune pathogenesis of the neuropathy of Lyme disease. Cell Mol. Neurobiol. 21, 477-495 (2001). [PubMed]
  218. Kunisawa,J. & Shastri,N. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. Mol. Cell 12, 565-576 (2003). [PubMed]
  219. Ghosh,J.C., Dohi,T., Kang,B.H., & Altieri,D.C. Hsp60 regulation of tumor cell apoptosis. J. Biol. Chem. 283, 5188-5194 (2008). [PubMed]
  220. Cappello,F., Conway de,M.E., Marasa,L., Zummo,G., & Macario,A.J. Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 7, 801-809 (2008). [PubMed]
  221. Xanthoudakis,S. et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 18, 2049-2056 (1999). [PubMed]
  222. Chaiwatanasirikul,K.A. & Sala,A. The tumour-suppressive function of CLU is explained by its localisation and interaction with HSP60. Cell Death Dis. 2, e219 (2011). [PubMed]
  223. Campanella,C. et al. Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells. Eur. J. Histochem. 52, 221-228 (2008). [PubMed]
  224. Soltys,B.J. & Gupta,R.S. Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol. Int. 21, 315-320 (1997). [PubMed]
  225. Piselli,P. et al. Different expression of CD44, ICAM-1, and HSP60 on primary tumor and metastases of a human pancreatic carcinoma growing in scid mice. Anticancer Res. 20, 825-831 (2000). [PubMed]
  226. de Kleer,I. et al. CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype. J. Immunol. 185, 2071-2079 (2010). [PubMed]
  227. Aalberse,J.A. et al. Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60). PLoS. ONE. 6, e24119 (2011). [PubMed]
  228. Kol,A., Lichtman,A.H., Finberg,R.W., Libby,P., & Kurt-Jones,E.A. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J. Immunol. 164, 13-17 (2000). [PubMed]
  229. Ohashi,K., Burkart,V., Flohe,S., & Kolb,H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558-561 (2000). [PubMed]
  230. Binder,R.J., Vatner,R., & Srivastava,P. The heat-shock protein receptors: some answers and more questions. Tissue Antigens 64, 442-451 (2004). [PubMed]
  231. Asea,A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 277, 15028-15034 (2002). [PubMed]
  232. Vabulas,R.M. et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276, 31332-31339 (2001). [PubMed]
  233. Vabulas,R.M. et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J. Biol. Chem. 277, 20847-20853 (2002). [PubMed]
  234. Triantafilou,M. & Triantafilou,K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 23, 301-304 (2002). [PubMed]
  235. Takeuchi,O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-451 (1999). [PubMed]
  236. Kirschning,C.J. & Schumann,R.R. TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr. Top. Microbiol. Immunol. 270, 121-144 (2002). [PubMed]
  237. Breloer,M. et al. Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur. J. Immunol. 31, 2051-2059 (2001). [PubMed]
  238. More,S.H., Breloer,M., & von,B.A. Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: Hsp60-mediated activation of cytotoxic T cells. Int. Immunol. 13, 1121-1127 (2001). [PubMed]
  239. Zanin-Zhorov,A., Nussbaum,G., Franitza,S., Cohen,I.R., & Lider,O. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J. 17, 1567-1569 (2003). [PubMed]
  240. Retzlaff,C., Yamamoto,Y., Hoffman,P.S., Friedman,H., & Klein,T.W. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect. Immun. 62, 5689-5693 (1994). [PubMed]
  241. Chen,W., Syldath,U., Bellmann,K., Burkart,V., & Kolb,H. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol. 162, 3212-3219 (1999). [PubMed]
  242. Habich,C. & Burkart,V. Heat shock protein 60: regulatory role on innate immune cells. Cell Mol. Life Sci. 64, 742-751 (2007). [PubMed]
  243. Flohé,S.B. et al. Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J. Immunol. 170, 2340-2348 (2003). [PubMed]
  244. Atre,N., Thomas,L., Mistry,R., Pathak,K., & Chiplunkar,S. Role of nitric oxide in heat shock protein induced apoptosis of gammadeltaT cells. Int. J. Cancer 119, 1368-1376 (2006). [PubMed]
  245. Laad,A.D., Thomas,M.L., Fakih,A.R., & Chiplunkar,S.V. Human gamma delta T cells recognize heat shock protein-60 on oral tumor cells. Int. J. Cancer 80, 709-714 (1999). [PubMed]
  246. Kaur,I. et al. Human peripheral gamma delta T cells recognize hsp60 molecules on Daudi Burkitt’s lymphoma cells. J. Immunol. 150, 2046-2055 (1993). [PubMed]
  247. Wieten,L. et al. Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett. 581, 3716-3722 (2007). [PubMed]
  248. van Eden,W., van der,Z.R., & Prakken,B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 5, 318-330 (2005). [PubMed]
  249. van Roon,J.A., van,E.W., van Roy,J.L., Lafeber,F.J., & Bijlsma,J.W. Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J. Clin. Invest 100, 459-463 (1997). [PubMed]
  250. Srivastava,P.K. Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr. Oncol. Rep. 7, 104-108 (2005). [PubMed]
  251. Arnold-Schild,D. et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol. 162, 3757-3760 (1999). [PubMed]
  252. Singh-Jasuja,H. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. 191, 1965-1974 (2000). [PubMed]
  253. Quintana,F.J. & Cohen,J.R. Heat shock proteins regulate inflammation by both molecular and network cross-reactivity in Molecular chaperones and cell signalling (eds. Henderson,B. & Pockley,A.G.), 263-287, Cambridge University Press, New York (2005).
  254. Ohue,R. et al. Bacterial heat shock protein 60, GroEL, can induce the conversion of naive T cells into a CD4 CD25(+) Foxp3-expressing phenotype. J. Innate. Immun. 3, 605-613 (2011). [PubMed]
  255. Schiller,P. et al. Cis-acting elements involved in the regulated expression of a human HSP70 gene. J. Mol. Biol. 203, 97-105 (1988). [PubMed]
  256. Åkerfelt,M., Morimoto,R.I., & Sistonen,L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555 (2010). [PubMed]
  257. Pirkkala,L., Nykanen,P., & Sistonen,L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131 (2001). [PubMed]
  258. Wu,C. Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441-469 (1995). [PubMed]
  259. Ali,A., Bharadwaj,S., O’Carroll,R., & Ovsenek,N. HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol. Cell Biol. 18, 4949-4960 (1998). [PubMed]
  260. Zou,J., Guo,Y., Guettouche,T., Smith,D.F., & Voellmy,R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471-480 (1998). [PubMed]
  261. Calderwood,S.K. et al. Signal transduction pathways leading to heat shock transcription. Sign. Transduct. Insights 2, 13-24 (2010). [PubMed]
  262. Zorzi,E. & Bonvini,P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers (Basel) 3, 3921-3956 (2011). [PubMed]
  263. Leach,M.D., Tyc,K.M., Brown,A.J., & Klipp,E. Modelling the regulation of thermal adaptation in Candida albicans, a major fungal pathogen of humans. PLoS. ONE. 7, e32467 (2012). [PubMed]
  264. Guo,Y. et al. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276, 45791-45799 (2001). [PubMed]
  265. Duina,A.A., Kalton,H.M., & Gaber,R.F. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative regulation of the heat shock response. J. Biol. Chem. 273, 18974-18978 (1998). [PubMed]
  266. Baler,R., Welch,W.J., & Voellmy,R. Heat shock gene regulation by nascent polypeptides and denatured proteins: hsp70 as a potential autoregulatory factor. J. Cell Biol. 117, 1151-1159 (1992). [PubMed]
  267. Abravaya,K., Myers,M.P., Murphy,S.P., & Morimoto,R.I. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev. 6, 1153-1164 (1992). [PubMed]
  268. Shi,Y., Mosser,D.D., & Morimoto,R.I. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654-666 (1998). [PubMed]
  269. Hietakangas,V. et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell Biol. 23, 2953-2968 (2003). [PubMed]
  270. Westerheide,S.D., Anckar,J., Stevens,S.M., Jr., Sistonen,L., & Morimoto,R.I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063-1066 (2009). [PubMed]
  271. Tang,D. et al. Expression of heat shock proteins and heat shock protein messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10, 46-58 (2005). [PubMed]
  272. Radons,J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 19, 1-13 (2014). [PubMed]
  273. Visone,R. & Croce,C.M. MiRNAs and cancer. Am. J. Pathol. 174, 1131-1138 (2009). [PubMed]
  274. Spizzo,R., Nicoloso,M.S., Croce,C.M., & Calin,G.A. SnapShot: MicroRNAs in Cancer. Cell 137, 586 (2009). [PubMed]
  275. Shan,Z.X. et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 584, 3592-3600 (2010). [PubMed]
  276. Pan,Z. et al. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models. PLoS. ONE. 7, e50515 (2012). [PubMed]
  277. Bajramovic,J.J. et al. Differential expression of stress proteins in human adult astrocytes in response to cytokines. J. Neuroimmunol. 106, 14-22 (2000). [PubMed]
  278. Cappello,F. et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS. ONE. 6, e28200 (2011). [PubMed]
  279. Wang,Y., Chen,L., Hagiwara,N., & Knowlton,A.A. Regulation of heat shock protein 60 and 72 expression in the failing heart. J. Mol. Cell Cardiol. 48, 360-366 (2010). [PubMed]
  280. Rappa,F. et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res. 32, 5139-5150 (2012). [PubMed]
  281. Ciocca,D.R. & Calderwood,S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86-103 (2005). [PubMed]
  282. Lutz,W., Leon,J., & Eilers,M. Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61-71 (2002). [PubMed]
  283. Dang,C.V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253-264 (2006). [PubMed]
  284. Oster,S.K., Ho,C.S., Soucie,E.L., & Penn,L.Z. The myc oncogene: Marvelously Complex. Adv. Cancer Res. 84, 81-154 (2002). [PubMed]
  285. Nesbit,C.E., Tersak,J.M., & Prochownik,E.V. MYC oncogenes and human neoplastic disease. Oncogene 18, 3004-3016 (1999). [PubMed]
  286. Tsai,Y.P., Teng,S.C., & Wu,K.J. Direct regulation of HSP60 expression by c-MYC induces transformation. FEBS Lett. 582, 4083-4088 (2008). [PubMed]
  287. Tang,H., Tian,E., Liu,C., Wang,Q., & Deng,H. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones. PLoS. ONE. 8, e59610 (2013). [PubMed]
  288. Um,J.H. et al. Involvement of DNA-dependent protein kinase in regulation of the mitochondrial heat shock proteins. Leuk. Res. 27, 509-516 (2003). [PubMed]
  289. Dephoure,N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. U. S. A 105, 10762-10767 (2008). [PubMed]
  290. Beausoleil,S.A., Villen,J., Gerber,S.A., Rush,J., & Gygi,S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285-1292 (2006). [PubMed]
  291. Johnson,C.A., White,D.A., Lavender,J.S., O’Neill,L.P., & Turner,B.M. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277, 9590-9597 (2002). [PubMed]
  292. Haaland,I. et al. Molecular mechanisms of nutlin-3 involve acetylation of p53, histones and heat shock proteins in acute myeloid leukemia. Mol. Cancer 13, 116 (2014). [PubMed]
  293. Ryabova,N.A., Marchenkov,V.V., Marchenkova,S.Y., Kotova,N.V., & Semisotnov,G.V. Molecular chaperone GroEL/ES: unfolding and refolding processes. Biochemistry (Mosc. ) 78, 1405-1414 (2013). [PubMed]
  294. Ghosh,J.C., Siegelin,M.D., Dohi,T., & Altieri,D.C. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70, 8988-8993 (2010). [PubMed]
  295. Benjamin,C.L., Ullrich,S.E., Kripke,M.L., & Ananthaswamy,H.N. p53 tumor suppressor gene: a critical molecular target for UV induction and prevention of skin cancer. Photochem. Photobiol. 84, 55-62 (2008). [PubMed]
  296. Green,D.R. At the gates of death. Cancer Cell 9, 328-330 (2006). [PubMed]
  297. Cappello,F. et al. 60KDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur. J. Histochem. 47, 105-110 (2003). [PubMed]
  298. Ciocca,D.R., Arrigo,A.P., & Calderwood,S.K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch. Toxicol. 87, 19-48 (2013). [PubMed]
  299. Cano,L.Q., Lavery,D.N., & Bevan,C.L. Mini-review: Foldosome regulation of androgen receptor action in prostate cancer. Mol. Cell Endocrinol. 369, 52-62 (2013). [PubMed]
  300. Pratt,W.B. & Toft,D.O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. (Maywood) 228, 111-133 (2003). [PubMed]
  301. Smith,D.F. Chaperones in progesterone receptor complexes. Semin. Cell Dev. Biol. 11, 45-52 (2000). [PubMed]
  302. Heinlein,C.A. & Chang,C. Role of chaperones in nuclear translocation and transactivation of steroid receptors. Endocrine 14, 143-149 (2001). [PubMed]
  303. Pratt,W.B. & Toft,D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306-360 (1997). [PubMed]
  304. Cheon,S.S. et al. beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proc. Natl. Acad. Sci. U. S. A 99, 6973-6978 (2002). [PubMed]
  305. Tsai,Y.P. et al. Interaction between HSP60 and beta-catenin promotes metastasis. Carcinogenesis 30, 1049-1057 (2009). [PubMed]
  306. Barazi,H.O., Zhou,L., Templeton,N.S., Krutzsch,H.C., & Roberts,D.D. Identification of heat shock protein 60 as a molecular mediator of alpha 3 beta 1 integrin activation. Cancer Res. 62, 1541-1548 (2002). [PubMed]
  307. Chandrasekaran,S., Guo,N.H., Rodrigues,R.G., Kaiser,J., & Roberts,D.D. Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J. Biol. Chem. 274, 11408-11416 (1999). [PubMed]
  308. Chandrasekaran,L. et al. Cell contact-dependent activation of alpha3beta1 integrin modulates endothelial cell responses to thrombospondin-1. Mol. Biol. Cell 11, 2885-2900 (2000). [PubMed]
  309. Stefano,L. et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 110, 284-294 (2009). [PubMed]
  310. Zhang,D. et al. Microglial LOX-1 reacts with extracellular HSP60 to bridge neuroinflammation and neurotoxicity. Neurochem. Int. 61, 1021-1035 (2012). [PubMed]
  311. Wallin,R.P. et al. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 23, 130-135 (2002). [PubMed]
  312. Saito,K., Dai,Y., & Ohtsuka,K. Enhanced expression of heat shock proteins in gradually dying cells and their release from necrotically dead cells. Exp. Cell Res. 310, 229-236 (2005). [PubMed]
  313. Bianchi,M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1-5 (2007). [PubMed]
  314. Xie,J. et al. Lectin-like oxidized low-density lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway. J. Immunol. 185, 2306-2313 (2010). [PubMed]
  315. Jia,X.M. et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J. Exp. Med. 211, 2307-2321 (2014). [PubMed]
  316. Habich,C., Baumgart,K., Kolb,H., & Burkart,V. The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J. Immunol. 168, 569-576 (2002). [PubMed]
  317. Tsan,M.F. & Gao,B. Heat shock protein and innate immunity. Cell Mol. Immunol. 1, 274-279 (2004). [PubMed]
  318. Vabulas,R.M. & Wagner,H. Toll-like receptor-dependent activation of antigen presenting cells by Hsp60, gp96 and Hsp70 in Molecular chaperones and cell signalling (eds. Henderson,B. & Pockley,A.G.), 113-132, Cambridge University Press, New York (2005).
  319. Coates,A.R.M. & Tormight,P. Cell-cell signalling properties of chaperonins in Molecular chaperones and cell signalling (eds. Henderson,B. & Pockley,A.G.), 99-112, Cambridge University Press, New York (2005).
  320. Gülden,E., Mollerus,S., Bruggemann,J., Burkart,V., & Habich,C. Heat shock protein 60 induces inflammatory mediators in mouse adipocytes. FEBS Lett. 582, 2731-2736 (2008). [PubMed]
  321. Gülden,E. et al. Heat shock protein 60: evidence for receptor-mediated induction of proinflammatory mediators during adipocyte differentiation. FEBS Lett. 583, 2877-2881 (2009). [PubMed]
  322. Märker,T., Kriebel,J., Wohlrab,U., & Habich,C. Heat shock protein 60 and adipocytes: characterization of a ligand-receptor interaction. Biochem. Biophys. Res. Commun. 391, 1634-1640 (2010). [PubMed]
  323. Märker,T., Kriebel,J., Wohlrab,U., Burkart,V., & Habich,C. Adipocytes from New Zealand obese mice exhibit aberrant proinflammatory reactivity to the stress signal heat shock protein 60. J. Diabetes Res. 2014, 187153 (2014). [PubMed]
  324. Macario,A.J. & Conway de Macario,E. Chaperonopathies by defect, excess, or mistake. Ann. N. Y. Acad. Sci. 1113, 178-191 (2007). [PubMed]
  325. Hansen,J.J. et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70, 1328-1332 (2002). [PubMed]
  326. Magen,D. et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet. 83, 30-42 (2008). [PubMed]
  327. Pockley,A.G., Henderson,B., & Multhoff,G. Extracellular cell stress proteins as biomarkers of human disease. Biochem. Soc. Trans. 42, 1744-1751 (2014). [PubMed]
  328. Asea,A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6, 435-442 (2000). [PubMed]
  329. Srivastava,P.K. Cancer immunology. Methods 12, 115-116 (1997). [PubMed]
  330. Multhoff,G. et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer 61, 272-279 (1995). [PubMed]
  331. Zanin-Zhorov,A. & Cohen,I.R. Signaling via TLR2 and TLR4 Directly Down-Regulates T Cell Effector Functions: The Regulatory Face of Danger Signals. Front. Immunol. 4, 211 (2013). [PubMed]
  332. Osterloh,A. et al. Heat shock protein 60 (HSP60) stimulates neutrophil effector functions. J. Leukoc. Biol. 86, 423-434 (2009). [PubMed]
  333. Wick,G., Kleindienst,R., Dietrich,H., & Xu,Q. Is atherosclerosis an autoimmune disease? Trends Food Sci. Technol. 3, 114-119 (1992). [CrossRef]
  334. Grundtman,C. & Wick,G. The autoimmune concept of atherosclerosis. Curr. Opin. Lipidol. 22, 327-334 (2011). [PubMed]
  335. Wu,C.T., Ou,L.S., Yeh,K.W., Lee,W.I., & Huang,J.L. Serum heat shock protein 60 can predict remission of flare-up in juvenile idiopathic arthritis. Clin. Rheumatol. 30, 959-965 (2011). [PubMed]
  336. Tomasello,G. et al. Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis. Appl. Immunohistochem. Mol. Morphol. 19, 552-561 (2011). [PubMed]
  337. Shamaei-Tousi,A. et al. Association between plasma levels of heat shock protein 60 and cardiovascular disease in patients with diabetes mellitus. Eur. Heart J. 27, 1565-1570 (2006). [PubMed]
  338. Devaraj,S., Dasu,M.R., Park,S.H., & Jialal,I. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52, 1665-1668 (2009). [PubMed]
  339. Huurman,V.A. et al. Immunological efficacy of heat shock protein 60 peptide DiaPep277 therapy in clinical type I diabetes. Clin. Exp. Immunol. 152, 488-497 (2008). [PubMed]
  340. Raz,I. et al. Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358, 1749-1753 (2001). [PubMed]
  341. Dasu,M.R., Devaraj,S., Park,S., & Jialal,I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 33, 861-868 (2010). [PubMed]
  342. Märker,T. et al. Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance. Diabetes 61, 615-625 (2012). [PubMed]
  343. Shamaei-Tousi,A. et al. Differential regulation of circulating levels of molecular chaperones in patients undergoing treatment for periodontal disease. PLoS. ONE. 2, e1198 (2007). [PubMed]
  344. Rizzo,M. et al. Heat-shock protein 60 kDa and atherogenic dyslipidemia in patients with untreated mild periodontitis: a pilot study. Cell Stress Chaperones 17, 399-407 (2012). [PubMed]
  345. Anraku,I. et al. Circulating heat shock protein 60 levels are elevated in HIV patients and are reduced by anti-retroviral therapy. PLoS. ONE. 7, e45291 (2012). [PubMed]
  346. Alard,J.E. et al. Autoantibodies to endothelial cell surface ATP synthase, the endogenous receptor for hsp60, might play a pathogenic role in vasculatides. PLoS. ONE. 6, e14654 (2011). [PubMed]
  347. Nahas,E.A. et al. The 60- and 70-kDa heat-shock proteins and their correlation with cardiovascular risk factors in postmenopausal women with metabolic syndrome. Cell Stress Chaperones 19, 559-568 (2014). [PubMed]
  348. Halcox,J.P. et al. Circulating human heat shock protein 60 in the blood of healthy teenagers: a novel determinant of endothelial dysfunction and early vascular injury? Arterioscler. Thromb. Vasc. Biol. 25, e141-e142 (2005). [PubMed]
  349. Wright,B.H., Corton,J.M., El-Nahas,A.M., Wood,R.F., & Pockley,A.G. Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels 15, 18-22 (2000). [PubMed]
  350. Hromadnikova,I. et al. Assessment of placental and maternal stress responses in patients with pregnancy related complications via monitoring of heat shock protein mRNA levels. Mol. Biol. Rep. in press (2014). [PubMed]
  351. Johnstone,E.D. et al. Differential proteomic analysis of highly purified placental cytotrophoblasts in pre-eclampsia demonstrates a state of increased oxidative stress and reduced cytotrophoblast antioxidant defense. Proteomics 11, 4077-4084 (2011). [PubMed]
  352. Satoh,J., Onoue,H., Arima,K., & Yamamura,T. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein. J. Neuropathol. Exp. Neurol. 64, 858-868 (2005). [PubMed]
  353. Chiti,F. & Dobson,C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333-366 (2006). [PubMed]
  354. MacKenzie,J.A. & Payne,R.M. Mitochondrial protein import and human health and disease. Biochim. Biophys. Acta 1772, 509-523 (2007). [PubMed]
  355. Czarnecka,A.M., Campanella,C., Zummo,G., & Cappello,F. Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol. Ther. 5, 714-720 (2006). [PubMed]
  356. Cappello,F. & Zummo,G. HSP60 expression during carcinogenesis: a molecular “proteus” of carcinogenesis? Cell Stress Chaperones 10, 263-264 (2005). [PubMed]
  357. Hamelin,C. et al. Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 278, 4845-4859 (2011). [PubMed]
  358. Cappello,F. et al. The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC. Cancer 5, 139 (2005). [PubMed]
  359. Cappello,F., Rappa,F., David,S., Anzalone,R., & Zummo,G. Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res. 23, 1325-1331 (2003). [PubMed]
  360. Cappello,F. et al. Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70, 83-88 (2002). [PubMed]
  361. Cappello,F. et al. Hsp60 and Hsp10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive pulmonary disease. Cancer 107, 2417-2424 (2006). [PubMed]
  362. Cappello,F., Di,S.A., D’Anna,S.E., Donner,C.F., & Zummo,G. Immunopositivity of heat shock protein 60 as a biomarker of bronchial carcinogenesis. Lancet Oncol. 6, 816 (2005). [PubMed]
  363. Lebret,T. et al. Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98, 970-977 (2003). [PubMed]
  364. Ito,T. et al. Expression of heat shock proteins in squamous cell carcinoma of the tongue: an immunohistochemical study. J. Oral Pathol. Med. 27, 18-22 (1998). [PubMed]
  365. Thomas,X. et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk. Res. 29, 1049-1058 (2005). [PubMed]
  366. Chant,I.D., Rose,P.E., & Morris,A.G. Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br. J. Haematol. 90, 163-168 (1995). [PubMed]
  367. Hsu,P.L. & Hsu,S.M. Abundance of heat shock proteins (hsp89, hsp60, and hsp27) in malignant cells of Hodgkin’s disease. Cancer Res. 58, 5507-5513 (1998). [PubMed]
  368. Castle,P.E., Ashfaq,R., Ansari,F., & Muller,C.Y. Immunohistochemical evaluation of heat shock proteins in normal and preinvasive lesions of the cervix. Cancer Lett. 229, 245-252 (2005). [PubMed]
  369. Kimura,E., Enns,R.E., Thiebaut,F., & Howell,S.B. Regulation of HSP60 mRNA expression in a human ovarian carcinoma cell line. Cancer Chemother. Pharmacol. 32, 279-285 (1993). [PubMed]
  370. Schneider,J. et al. Immunohistochemical detection of HSP60-expression in human ovarian cancer. Correlation with survival in a series of 247 patients. Anticancer Res. 19, 2141-2146 (1999). [PubMed]
  371. Hjerpe,E. et al. HSP60 predicts survival in advanced serous ovarian cancer. Int. J. Gynecol. Cancer 23, 448-455 (2013). [PubMed]
  372. Bodzek,P., Partyka,R., & masiewicz-Bodzek,A. Antibodies against Hsp60 and Hsp65 in the sera of women with ovarian cancer. J. Ovarian. Res. 7, 30 (2014). [PubMed]
  373. Bini,L. et al. Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis 18, 2832-2841 (1997). [PubMed]
  374. Sebastiani,V. et al. Tissue microarray analysis of FAS, Bcl-2, Bcl-x, ER, PgR, Hsp60, p53 and Her2-neu in breast carcinoma. Anticancer Res. 26, 2983-2987 (2006). [PubMed]
  375. Li,D.Q. et al. Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6, 3352-3368 (2006). [PubMed]
  376. Taucher,S. et al. Influence of neoadjuvant therapy with epirubicin and docetaxel on the expression of HER2/neu in patients with breast cancer. Breast Cancer Res. Treat. 82, 207-213 (2003). [PubMed]
  377. Di Felice,V., David,S., Cappello,F., Farina,F., & Zummo,G. Is chlamydial heat shock protein 60 a risk factor for oncogenesis? Cell Mol. Life Sci. 62, 4-9 (2005). [PubMed]
  378. Tanabe,M. et al. The ATPase activity of molecular chaperone HSP60 is inhibited by immunosuppressant mizoribine. Am. J. Mol. Biol. 2, 93-102 (2012). [CrossRef]
  379. Chapman,E., Farr,G.W., Fenton,W.A., Johnson,S.M., & Horwich,A.L. Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state. Proc. Natl. Acad. Sci. U. S. A 105, 19205-19210 (2008). [PubMed]
  380. Wang,J. et al. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol. Biosyst. 9, 1489-1497 (2013). [PubMed]
  381. Wulff,J.E., Herzon,S.B., Siegrist,R., & Myers,A.G. Evidence for the rapid conversion of stephacidin B into the electrophilic monomer avrainvillamide in cell culture. J. Am. Chem. Soc. 129, 4898-4899 (2007). [PubMed]
  382. Nagumo,Y. et al. Structure-activity relationships of epolactaene derivatives: structural requirements for inhibition of Hsp60 chaperone activity. Bioorg. Med. Chem. Lett. 14, 4425-4429 (2004). [PubMed]
  383. Nagumo,Y. et al. Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem. J. 387, 835-840 (2005). [PubMed]
  384. Morino,M. et al. Specific regulation of HSPs in human tumor cell lines by flavonoids. In Vivo 11, 265-270 (1997). [PubMed]
  385. Hiranuma,K. et al. Induction of mitochondrial chaperonin, hsp60, by cadmium in human hepatoma cells. Biochem. Biophys. Res. Commun. 194, 531-536 (1993). [PubMed]
  386. Dougherty,T.J. et al. Photodynamic therapy. J. Natl. Cancer Inst. 90, 889-905 (1998). [PubMed]
  387. Jalili,A. et al. Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin. Cancer Res. 10, 4498-4508 (2004). [PubMed]
  388. Hanlon,J.G., Adams,K., Rainbow,A.J., Gupta,R.S., & Singh,G. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J. Photochem. Photobiol. B 64, 55-61 (2001). [PubMed]
  389. Korbelik,M., Sun,J., & Cecic,I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 65, 1018-1026 (2005). [PubMed]
  390. Murshid,A., Gong,J., Stevenson,M.A., & Calderwood,S.K. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert. Rev. Vaccines. 10, 1553-1568 (2011). [PubMed]
  391. Tamura,Y., Peng,P., Liu,K., Daou,M., & Srivastava,P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117-120 (1997). [PubMed]
  392. Quintana,F.J., Carmi,P., Mor,F., & Cohen,I.R. DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J. Immunol. 171, 3533-3541 (2003). [PubMed]
  393. Quintana,F.J., Carmi,P., Mor,F., & Cohen,I.R. Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum. 50, 3712-3720 (2004). [PubMed]
  394. Anderton,S.M., van der,Z.R., Prakken,B., Noordzij,A., & van Eden W. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis. J. Exp. Med. 181, 943-952 (1995). [PubMed]
  395. Huang,C.Y. et al. DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol. Oncol. 107, 404-412 (2007). [PubMed]
  396. Kilmartin,B. & Reen,D.J. HSP60 induces self-tolerance to repeated HSP60 stimulation and cross-tolerance to other pro-inflammatory stimuli. Eur. J. Immunol. 34, 2041-2051 (2004). [PubMed]
  397. Chen,S.T., Pan,T.L., Tsai,Y.C., & Huang,C.M. Proteomics reveals protein profile changes in doxorubicin–treated MCF-7 human breast cancer cells. Cancer Lett. 181, 95-107 (2002). [PubMed]
  398. Li,Z., Zhao,X., Yang,J., & Wei,Y. Proteomics profile changes in cisplatin-treated human ovarian cancer cell strain. Sci. China C. Life Sci. 48, 648-657 (2005). [PubMed]
  399. Castagna,A. et al. A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics 4, 3246-3267 (2004). [PubMed]
  400. Tsuji,T. et al. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins. Toxicol. Appl. Pharmacol. 234, 202-208 (2009). [PubMed]
  401. Ishida,K. et al. Effect of the steroid receptor antagonist RU486 (mifepristone) on an IFNgamma-induced persistent Chlamydophila pneumoniae infection model in epithelial HEp-2 cells. J. Infect. Chemother. 18, 22-29 (2012). [PubMed]
  402. Lu,X. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells. J. Appl. Toxicol. 33, 586-592 (2011). [CrossRef]
  403. Chang,C.L. et al. Immune mechanism of the antitumor effects generated by bortezomib. J. Immunol. 189, 3209-3220 (2012). [PubMed]
  404. Lee,J.H. et al. 1,25-Dihydroxyvitamin D(3) enhances NK susceptibility of human melanoma cells via Hsp60-mediated FAS expression. Eur. J. Immunol. 41, 2937-2946 (2011). [PubMed]
  405. Tsuei,A.C. & Martinus,R.D. Metformin induced expression of Hsp60 in human THP-1 monocyte cells. Cell Stress Chaperones 17, 23-28 (2012). [PubMed]
  406. Itoh,H., Komatsuda,A., Wakui,H., Miura,A.B., & Tashima,Y. Mammalian HSP60 is a major target for an immunosuppressant mizoribine. J. Biol. Chem. 274, 35147-35151 (1999). [PubMed]
  407. Drastichova,Z. et al. Global changes in the rat heart proteome induced by prolonged morphine treatment and withdrawal. PLoS. ONE. 7, e47167 (2012). [PubMed]
  408. Standards of medical care in diabetes–2009. Diabetes Care 32 Suppl 1, S13-S61 (2009). [PubMed]
  409. Shinoda,M. et al. Pharmacokinetics of mizoribine in adult living donor liver transplantation. Transplant. Proc. 44, 1329-1335 (2012). [PubMed]
  410. Chapman,E., Farr,G.W., Furtak,K., & Horwich,A.L. A small molecule inhibitor selective for a variant ATP-binding site of the chaperonin GroEL. Bioorg. Med. Chem. Lett. 19, 811-813 (2009). [PubMed]
  411. Sun,W., Wang,L., Jiang,H., Chen,D., & Murchie,A.I. Targeting mitochondrial transcription in fission yeast with ETB, an inhibitor of HSP60, the chaperone that binds to the mitochondrial transcription factor Mtf1. Genes Cells 17, 122-131 (2012). [PubMed]
  412. Ban,H.S., Shimizu,K., Minegishi,H., & Nakamura,H. Identification of HSP60 as a primary target of o-carboranylphenoxyacetanilide, an HIF-1alpha inhibitor. J. Am. Chem. Soc. 132, 11870-11871 (2010). [PubMed]
  413. Ban,H.S., Shimizu,K., Minegishi,H., & Nakamura,H. Identification of heat shock protein 60 as the regulator of the hypoxia-inducible factor subunit HIF-1α. Pure Appl. Chem. 84, 2325-2337 (2012). [CrossRef]
  414. Nakamura,H. et al. Development of hypoxia-inducible factor (HIF)-1alpha inhibitors: effect of ortho-carborane substituents on HIF transcriptional activity under hypoxia. Bioorg. Med. Chem. Lett. 23, 806-810 (2013). [PubMed]
  415. Coleman,R.S., Walczak,M.C., & Campbell,E.L. Total synthesis of lucilactaene, a cell cycle inhibitor active in p53-inactive cells. J. Am. Chem. Soc. 127, 16038-16039 (2005). [PubMed]
  416. Kakeya,H. et al. Lucilactaene, a new cell cycle inhibitor in p53-transfected cancer cells, produced by a Fusarium sp. J. Antibiot. (Tokyo) 54, 850-854 (2001). [PubMed]
  417. Yamaguchi,J. et al. Determination by asymmetric total synthesis of the absolute configuration of lucilactaene, a cell-cycle inhibitor in p53-transfected cancer cells. Angew. Chem. Int. Ed Engl. 44, 3110-3115 (2005). [PubMed]
  418. Cassiano,C. et al. Chemical proteomics reveals heat shock protein 60 to be the main cellular target of the marine bioactive sesterterpene suvanine. Chembiochem. 13, 1953-1958 (2012). [PubMed]
  419. Vila,A. et al. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chem. Res. Toxicol. 21, 432-444 (2008). [PubMed]
  420. Fukuoka,K. et al. Inhibitory actions of several natural products on proliferation of rat vascular smooth muscle cells induced by Hsp60 from Chlamydia pneumoniae J138. J. Agric. Food Chem. 52, 6326-6329 (2004). [PubMed]
  421. Chaudhry,C., Horwich,A.L., Brunger,A.T., & Adams,P.D. Exploring the structural dynamics of the E.coli chaperonin GroEL using translation-libration-screw crystallographic refinement of intermediate states. J. Mol. Biol. 342, 229-245 (2004). [PubMed]